The design of optimal therapeutic small interfering RNA molecules targeting diverse strains of influenza A virus

نویسندگان

  • Mahmoud ElHefnawi
  • Nafisa Hassan
  • Mona Kamar
  • Rania Siam
  • Anna Lisa Remoli
  • Iman El-Azab
  • Osama AlAidy
  • Giulia Marsili
  • Marco Sgarbanti
چکیده

MOTIVATION There is an urgent need for new medications to combat influenza pandemics. METHODS Using the genome analysis of the influenza A virus performed previously, we designed and performed a combinatorial exhaustive systematic methodology for optimal design of universal therapeutic small interfering RNA molecules (siRNAs) targeting all diverse influenza A viral strains. The rationale was to integrate the factors for highly efficient design in a pipeline of analysis performed on possible influenza-targeting siRNAs. This analysis selects specific siRNAs that has the ability to target highly conserved, accessible and biologically significant regions. This would require minimal dosage and side effects. RESULTS AND DISCUSSION First, >6000 possible siRNAs were designed. Successive filtration followed where a novel method for siRNA scoring filtration layers was implemented. This method excluded siRNAs below the 90% experimental inhibition mapped scores using the intersection of 12 different scoring algorithms. Further filtration of siRNAs is done by eliminating those with off-targets in the human genome and those with undesirable properties and selecting siRNA targeting highly probable single-stranded regions. Finally, the optimal properties of the siRNA were ensured through selection of those targeting 100% conserved, biologically functional short motifs. Validation of a predicted active (sh114) and a predicted inactive (sh113) (that was filtered out in Stage 8) silencer of the NS1 gene showed significant inhibition of the NS1 gene for sh114, with negligible decrease for sh113 which failed target accessibility. This demonstrated the fertility of this methodology. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes

Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...

متن کامل

New Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription

Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...

متن کامل

In vivo inhibition of influenza A virus replication by RNA interference targeting the PB2 subunit via intratracheal delivery

BACKGROUND Influenza virus infection is a major threat to human health. Small interfering RNA (siRNA) is a promising approach for the prevention and treatment of viral infections. In this study, we constructed a series of DNA vector-based short hairpin RNAs (shRNAs) that target various genes of the influenza A virus using the polymerase III U6-RNA promoter to prevent influenza virus infection i...

متن کامل

Small Interfering RNA Targeting M2 Gene Induces Effective and Long Term Inhibition of Influenza A Virus Replication

RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector ...

متن کامل

Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line

Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 27 24  شماره 

صفحات  -

تاریخ انتشار 2011